
HOMEWORK 6

Due date: Nov 6, Monday of Week 11.

Exercises: 5, 11, 12, page 83-84
Exercises: 5, page 86
Exercises: 2, 10, 11, 12, page 95-96

Given a set X and a positive integer n, recall that the notation Xn denotes the Cartesian product
X ×X × · · · ×X (n-times) and an element of Xn is of the form (x1, . . . , xn) with xi ∈ X. Let F
be a field and let W be a vector space over F . Then Wn has a natural vector space structure: its
addition and scaler multiplication are defined by

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn);

c(x1, . . . , xn) := (cx1, . . . , cxn).

Here the notation := has the following meaning: the right side of this notation is the definition of
the left side, or its left side is defined in terms of the right side. It should be clear that dimF W

n =
ndimF W if dimF W is finite.

Problem 1. Let V,W be vector spaces over F with dimF V = n. We don’t assume that W has
finite dimension. Let B = {α1, . . . , αn} be a fixed (ordered) basis of V .

(1) Consider the linear transformation θB : HomF (V,W ) → Wn (the notation θB means that
this linear transformation depends on B) defined by

θB(T ) = (T (α1), T (α2), . . . , T (αn)),∀T ∈ HomF (V,W ).

Show that θB is an isomorphism directly (without comparing dimensions).
(2) Conclude that dimF HomF (V,W ) = ndimF W if dimF W is also finite.

(Comment: Part (1) is just a restatement of Theorem 1, page 69. A special case of (2) is the
isomorphism HomF (Fn,W ) ∼= Wn. An even more special case is HomF (F,W ) = W .)

Problem 2. Let V,W be two vector spaces over F and T : V → W be a linear transformation.
Show that there is isomorphism

T : V/ker(T )→ Im(T )

defined by T (α+ ker(T )) := T (α).

The proof is given in class. Please repeat it here.

Problem 3. Given V1, V2, V3 ∈ VectF and T1 ∈ HomF (V1, V2), T2 ∈ HomF (V2, V3). Show that

(1) ker(T1) ⊂ ker(T2 ◦ T1);
(2) T1(ker(T2 ◦ T1)) ⊂ ker(T2).

(3) There is an injective map T̃1 : ker(T2 ◦ T1)/ker(T1) → ker(T2) defined by T̃1(x̄) = T1(x) for
x ∈ ker(T2 ◦T1), where x̄ represents the equivalence class of x, namely x̄ = x+ker(T1). (You
need to check that this map is well-defined, linear and injective. You can omit the “linear”
part if you think it is easy.)

(4) Assume that dimF (Vi) < ∞ for i = 1, 2, 3. Show that dimF ker(T2 ◦ T1) ≤ dimF ker(T1) +
dimF ker(T2).

(5) Given A2 ∈ Matm×n(F ) and A1 ∈ Matn×k(F ), show that

rank(A1) + rank(A2)− n ≤ rank(A2A1) ≤ min {rank(A1), rank(A2)} .

Hint: Consider the linear transformation T1 : F k → Fn, T2 : Fn → Fm defined by Ti(X) =
AiX, and use (4).
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(6) Given a matrix A ∈ Matm×n(F ) with rank(F ) = r and a positive number p with p < r.
Show that there does not exist matrices C ∈ Matm×p(F ) and R ∈ Matp×n(F ) such that
A = CR. Hint: This is a direct corollary of the last part.

Comment: The inequality in (5) is called Sylvester’s rank inequality. Compare (6) with Problem
2 of HW 5. Do this problem step by step. It is not hard at all.

Problem 4. (1) Show that Cn is isomorphic to R2n as an R-vector space. Namely, there exists
an R-linear isomorphism T : Cn → R2n.

(2) Given v = (z1, . . . , zn) ∈ Cn with zj = aj + bj
√
−1 ∈ C with aj , bj ∈ R. Compute T (v) for

the isomorphism T you choose in part (1).

Problem 5. Consider the R-vector space V = C. Then dimR(V ) = 2. Denote e1 = −1 + 7i and
e2 = 5i, where i =

√
−1 ∈ C.

(1) Show that B = {e1, e2} is a basis of V over R.
(2) Let z = x+ yi ∈ C with x, y ∈ R. Consider the map fz : V → V defined by fz(t) = zt. Show

that fz is R-linear.
(3) Let T (z) ∈ Mat2×2(R) be the matrix of fz with respect to the ordered basis B. Show that

T (z) =

(
x+ 7y 5y
−10y x− 7y

)
.

Note that the matrix T (z) is the one given in Problem 5 of page 86 of the textbook. By Problem
5 of Page 86, the map z 7→ T (z) is injective, and satisfies T (z1z2) = T (z1)T (z2). These properties
can be proved without explicit calculation, just using the fact that T (z) is the matrix of the linear
transformation fz. The next problem is a “higher dimensional” version of Problem 5 of page 86.

Problem 6. Consider the R-vector space V = C2. Then dimR(V ) = 4.

(1) Find an ordered basis B of V over R.
(2) For a matrix A ∈ Mat2×2(C), consider the map TA : V → V defined by TA(X) = AX for

X ∈ C2, which is R-linear. Denote R(A) = [TA]B, namely R(A) ∈ Mat4×4(R) is the matrix
of TA with respect to B when V is viewed as a R-vector space. Show that the map A 7→ R(A)
from Mat2×2(C) to Mat4×4(R) satisfies R(A)R(B) = R(AB).

(3) Compute R(I2), where I2 ∈ Mat2×2(C) is the identity matrix.
(4) Show that if A is invertible, then R(A) invertible.

(5) Let A =

(
1 i
i 1

)
. Compute R(A). (It depends on the ordered basis you chose in part (1)).

The following problem is similar to the above problem in a slightly different situation. Part of
it has been covered in class. You don’t have to submit a solution because it is not a very specific
problem. But you are advised to do it. It is possible that we will have a problem like this in our
next exam.

Problem 7. Denote α = 3
√

2. Consider F =
{
a+ bα+ cα2|a, b, c ∈ Q

}
. We know that F is a field

and it is also a vector space over Q of dimension 3 from previous HW. We view it as a Q-vector
space.

(1) Given x = a+ bα+ cα2 ∈ F and the linear map Tx : F → F given by Tx(y) = xy. It is not
hard to see Tx is well-defined and Q-linear. Suppose that x 6= 0. Show that Tx is injective
and conclude that there exists a y ∈ F such that xy = 1.

(2) Fix an ordered basis B of F (as a Q vector space) and compute the matrix [Tx]B of Tx with
respect to the basis you chose.

(3) Show that [Tx]B is invertible (this is similar to part (4) of Problem 6.)
(4) Do a higher dimensional analogue of this. For example, given a matrix A ∈ Mat2×2(F ), and

consider the linear map TA : F 2 → F 2. View F 2 as a Q-vector space and choose a basis B′
of F 2 over Q. Then compute [TA]B′ ∈ Mat6×6(Q) explicitly in terms of entries of A. Show
that if A is invertible as an element of Mat2×2(F ) then [TA]B is invertible as an element of
Mat6×6(Q).


