HOMEWORK 6

Due date: Nov 6, Monday of Week 11.

Exercises: 5, 11, 12, page 83-84 Exercises: 5, page 86 Exercises: 2, 10, 11, 12, page 95-96

Given a set X and a positive integer n, recall that the notation X^n denotes the Cartesian product $X \times X \times \cdots \times X$ (n-times) and an element of X^n is of the form (x_1, \ldots, x_n) with $x_i \in X$. Let F be a field and let W be a vector space over F. Then W^n has a natural vector space structure: its addition and scaler multiplication are defined by

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) := (x_1 + y_1, \dots, x_n + y_n);$$

 $c(x_1, \dots, x_n) := (cx_1, \dots, cx_n).$

Here the notation := has the following meaning: the right side of this notation is the definition of the left side, or its left side is defined in terms of the right side. It should be clear that $\dim_F W^n = n \dim_F W$ if $\dim_F W$ is finite.

Problem 1. Let V, W be vector spaces over F with $\dim_F V = n$. We don't assume that W has finite dimension. Let $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ be a fixed (ordered) basis of V.

(1) Consider the linear transformation $\theta_{\mathcal{B}}$: Hom_F(V,W) $\rightarrow W^n$ (the notation $\theta_{\mathcal{B}}$ means that this linear transformation depends on \mathcal{B}) defined by

 $\theta_{\mathcal{B}}(T) = (T(\alpha_1), T(\alpha_2), \dots, T(\alpha_n)), \forall T \in \operatorname{Hom}_F(V, W).$

Show that $\theta_{\mathcal{B}}$ is an isomorphism directly (without comparing dimensions).

(2) Conclude that $\dim_F \operatorname{Hom}_F(V, W) = n \dim_F W$ if $\dim_F W$ is also finite.

(Comment: Part (1) is just a restatement of Theorem 1, page 69. A special case of (2) is the isomorphism $\operatorname{Hom}_F(F^n, W) \cong W^n$. An even more special case is $\operatorname{Hom}_F(F, W) = W$.)

Problem 2. Let V, W be two vector spaces over F and $T : V \to W$ be a linear transformation. Show that there is isomorphism

$$\overline{T}: V/\ker(T) \to \operatorname{Im}(T)$$

defined by $\overline{T}(\alpha + \ker(T)) := T(\alpha)$.

The proof is given in class. Please repeat it here.

Problem 3. Given $V_1, V_2, V_3 \in Vect_F$ and $T_1 \in Hom_F(V_1, V_2), T_2 \in Hom_F(V_2, V_3)$. Show that

- (1) $\ker(T_1) \subset \ker(T_2 \circ T_1);$
- (2) $T_1(\ker(T_2 \circ T_1)) \subset \ker(T_2).$
- (3) There is an injective map \widetilde{T}_1 : ker $(T_2 \circ T_1)/$ ker $(T_1) \to$ ker (T_2) defined by $\widetilde{T}_1(\bar{x}) = T_1(x)$ for $x \in$ ker $(T_2 \circ T_1)$, where \bar{x} represents the equivalence class of x, namely $\bar{x} = x + \text{ker}(T_1)$. (You need to check that this map is well-defined, linear and injective. You can omit the "linear" part if you think it is easy.)
- (4) Assume that $\dim_F(V_i) < \infty$ for i = 1, 2, 3. Show that $\dim_F \ker(T_2 \circ T_1) \leq \dim_F \ker(T_1) + \dim_F \ker(T_2)$.
- (5) Given $A_2 \in \operatorname{Mat}_{m \times n}(F)$ and $A_1 \in \operatorname{Mat}_{n \times k}(F)$, show that

 $\operatorname{rank}(A_1) + \operatorname{rank}(A_2) - n \le \operatorname{rank}(A_2A_1) \le \min \left\{ \operatorname{rank}(A_1), \operatorname{rank}(A_2) \right\}.$

Hint: Consider the linear transformation $T_1: F^k \to F^n, T_2: F^n \to F^m$ defined by $T_i(X) = A_i X$, and use (4).

HOMEWORK 6

(6) Given a matrix $A \in \operatorname{Mat}_{m \times n}(F)$ with $\operatorname{rank}(F) = r$ and a positive number p with p < r. Show that there does **not** exist matrices $C \in \operatorname{Mat}_{m \times p}(F)$ and $R \in \operatorname{Mat}_{p \times n}(F)$ such that A = CR. Hint: This is a direct corollary of the last part.

Comment: The inequality in (5) is called Sylvester's rank inequality. Compare (6) with Problem 2 of HW 5. Do this problem step by step. It is not hard at all.

- **Problem 4.** (1) Show that \mathbb{C}^n is isomorphic to \mathbb{R}^{2n} as an \mathbb{R} -vector space. Namely, there exists an \mathbb{R} -linear isomorphism $T : \mathbb{C}^n \to \mathbb{R}^{2n}$.
 - (2) Given $v = (z_1, \ldots, z_n) \in \mathbb{C}^n$ with $z_j = a_j + b_j \sqrt{-1} \in \mathbb{C}$ with $a_j, b_j \in \mathbb{R}$. Compute T(v) for the isomorphism T you choose in part (1).

Problem 5. Consider the \mathbb{R} -vector space $V = \mathbb{C}$. Then $\dim_{\mathbb{R}}(V) = 2$. Denote $e_1 = -1 + 7i$ and $e_2 = 5i$, where $i = \sqrt{-1} \in \mathbb{C}$.

- (1) Show that $\mathcal{B} = \{e_1, e_2\}$ is a basis of V over \mathbb{R} .
- (2) Let $z = x + yi \in \mathbb{C}$ with $x, y \in \mathbb{R}$. Consider the map $f_z : V \to V$ defined by $f_z(t) = zt$. Show that f_z is \mathbb{R} -linear.
- (3) Let $T(z) \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be the matrix of f_z with respect to the ordered basis \mathcal{B} . Show that

$$T(z) = \begin{pmatrix} x + 7y & 5y \\ -10y & x - 7y \end{pmatrix}.$$

Note that the matrix T(z) is the one given in Problem 5 of page 86 of the textbook. By Problem 5 of Page 86, the map $z \mapsto T(z)$ is injective, and satisfies $T(z_1z_2) = T(z_1)T(z_2)$. These properties can be proved without explicit calculation, just using the fact that T(z) is the matrix of the linear transformation f_z . The next problem is a "higher dimensional" version of Problem 5 of page 86.

Problem 6. Consider the \mathbb{R} -vector space $V = \mathbb{C}^2$. Then $\dim_{\mathbb{R}}(V) = 4$.

- (1) Find an ordered basis \mathcal{B} of V over \mathbb{R} .
- (2) For a matrix $A \in \operatorname{Mat}_{2\times 2}(\mathbb{C})$, consider the map $T_A : V \to V$ defined by $T_A(X) = AX$ for $X \in \mathbb{C}^2$, which is \mathbb{R} -linear. Denote $R(A) = [T_A]_{\mathcal{B}}$, namely $R(A) \in \operatorname{Mat}_{4\times 4}(\mathbb{R})$ is the matrix of T_A with respect to \mathcal{B} when V is viewed as a \mathbb{R} -vector space. Show that the map $A \mapsto R(A)$ from $\operatorname{Mat}_{2\times 2}(\mathbb{C})$ to $\operatorname{Mat}_{4\times 4}(\mathbb{R})$ satisfies R(A)R(B) = R(AB).
- (3) Compute $R(I_2)$, where $I_2 \in Mat_{2 \times 2}(\mathbb{C})$ is the identity matrix.
- (4) Show that if A is invertible, then R(A) invertible.
- (5) Let $A = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$. Compute R(A). (It depends on the ordered basis you chose in part (1)).

The following problem is similar to the above problem in a slightly different situation. Part of it has been covered in class. You don't have to submit a solution because it is not a very specific problem. But you are advised to do it. It is possible that we will have a problem like this in our next exam.

Problem 7. Denote $\alpha = \sqrt[3]{2}$. Consider $F = \{a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Q}\}$. We know that F is a field and it is also a vector space over \mathbb{Q} of dimension 3 from previous HW. We view it as a \mathbb{Q} -vector space.

- (1) Given $x = a + b\alpha + c\alpha^2 \in F$ and the linear map $T_x : F \to F$ given by $T_x(y) = xy$. It is not hard to see T_x is well-defined and \mathbb{Q} -linear. Suppose that $x \neq 0$. Show that T_x is injective and conclude that there exists a $y \in F$ such that xy = 1.
- (2) Fix an ordered basis \mathcal{B} of F (as a \mathbb{Q} vector space) and compute the matrix $[T_x]_{\mathcal{B}}$ of T_x with respect to the basis you chose.
- (3) Show that $[T_x]_{\mathcal{B}}$ is invertible (this is similar to part (4) of Problem 6.)
- (4) Do a higher dimensional analogue of this. For example, given a matrix A ∈ Mat_{2×2}(F), and consider the linear map T_A: F² → F². View F² as a Q-vector space and choose a basis B' of F² over Q. Then compute [T_A]_{B'} ∈ Mat_{6×6}(Q) explicitly in terms of entries of A. Show that if A is invertible as an element of Mat_{2×2}(F) then [T_A]_B is invertible as an element of Mat_{6×6}(Q).